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ABSTRACT 
In this paper we have analyzed the Mathematical modeling of Syphilis disease, Syphilis is a highly contagious 

disease spread primarily by sexual activity, including oral and anal sex. Occasionally, the disease can be passed 

to another person through prolonged kissing or close bodily contact. Although this disease is spread from sores, 

the vast majority of those sores go unrecognized. The infected person is often unaware of the disease and 

unknowingly passes it on to his or her sexual partner. Pregnant women with the disease can spread it to 

their baby. This disease, called congenital syphilis, can cause abnormalities or even death to the child. 

Syphilis cannot be spread by toilet seats, door knobs, swimming pools, hot tubs, bath tubs, shared clothing, or 

eating utensils. 

Keywords:modeling, contagious diseases, epidemics, stratified populations, susceptible, chain-branched 
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I. INTRODUCTION 
The spread of a contagious disease involves 

interactions of two populations: the susceptible and 

the infectives. In some diseases these two populations 

are from different species. For example, malaria is 

not passed directly between animals but by the 

anopheline mosquitoes, and schistosomiasis is passed 

from animal to animal only through contact with 

water in which live snails that can incubate the 

disease-causing helminthes. In other diseases, the 

infection can be passed direct from invectives to 

susceptible: Viral diseases like chicken-pox, measles, 

and influenza, and bacterial diseases like tuberculosis 

can pass through a population much like flame 

through fuel. 

There are useful analogies between epidemics 

and chemical reactions. A theory of epidemics was 

derived by the Royal college of Surgeons in 

Edinburgh between 1900 and 1930.They introduced 

and used many novel mathematical ideas in studies of 

populations .One important result of theirs is that any 

infection determines a threshold size for the 

susceptible population, above which an epidemic will 

propagate. Their theoretical epidemic threshold is 

observed in practice, and it measures to what extent a 

real population is vulnerable to spread of an 

epidemic.  

These models can serve as building blocks to 

study other diseases, for example ones having 

intermediate hosts, and diseases in stratified 

populations, for example where there are mixing 

groups that have various contact probabilities, like 

families, preschools, and social groups. Some of these 

extensions are described in the exercises 

 

II. SPREAD OF AN EPIDEMIC AND 

DETERMINISTIC MODELS 
Syphilis is a sexually transmitted disease (STD) 

caused by the bacterium Treponema pallidum. It has 

often been called "the great imitator," because so 

many of the signs and symptoms of syphilis are 

indistinguishable from those of other diseases. 

The syphilis bacterium is passed from person to 

person through direct contact with a syphilis sore 

(also called a chancre). Sores occur mainly on the 

external genitals, in the vagina, on the anus, and in 

the rectum. Sores also can occur on the lips and in the 

mouth (areas covered by mucous membranes). 

Transmission of the bacterium occurs during vaginal, 

anal, or oral sex. Persons with either primary or 

secondary syphilis (in the early stages) can transmit 

the disease. Pregnant women with the disease can 

pass it to the babies they are carrying. Syphilis cannot 

be spread through casual contact, such as with toilet 

seats, door knobs, swimming pools, hot tubs, bath 

tubs, shared clothing, or eating utensils. 

Over the past several years, increases in syphilis 

among men who have sex with other men have been 

reported. In the recent outbreaks, 20% to 70% of 

cases occurred in men who also have HIV. While the 

health problems caused by syphilis in adults are 

serious in their own right, it is now known that the 

genital sores caused by syphilis in adults also make it 

easier to transmit and acquire HIV infection sexually. 
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In fact, there is a two- to five-fold increased risk of 

acquiring HIV infection when syphilis is present. 

 

Syphilis Symptoms 

Primary Stage 
The primary stage of syphilis is usually marked 

by the appearance of a single sore, but there may be 

multiple sores. The duration between infection with 

syphilis and the onset of the first symptoms can range 

from 10-90 days (average 21 days). The sore is 

usually firm, round, small, and painless. It appears at 

the spot where the syphilis bacterium entered the 

body. The sore generally lasts three to six weeks, and 

it heals with or without treatment. However, if 

adequate treatment is not administered, the infection 

can progress to secondary syphilis.  

 

Secondary Stage 
The secondary stage of syphilis is characterized 

by a skin rash and mucous membrane sores. This 

stage typically starts with the development of a rash 

on one or more areas of the body -- the rash usually 

does not cause itching. Rashes associated with 

secondary syphilis can appear as the initial sore is 

healing or several weeks after it has healed. The 

characteristic rash of secondary syphilis may appear 

as rough, red, or reddish-brown spots both on the 

palms of the hands and the bottoms of the feet. 

However, rashes with a different appearance may 

occur on other parts of the body, sometimes 

resembling rashes caused by other diseases. 

Sometimes rashes associated with secondary syphilis 

are so faint that they are not noticed. In addition to 

rashes, symptoms of secondary syphilis may include 

fever, swollen lymph glands, sore throat, patchy hair 

loss, headaches, weight loss, muscle aches, and 

fatigue. The signs and symptoms of secondary 

syphilis will resolve with or without treatment, but 

without treatment, the infection may progress to the 

latent and late stages of disease.  

 

Late Stage 
The latent (hidden) stage of syphilis begins when 

secondary symptoms disappear. Without treatment, 

the infection remains in the body. In the late stages of 

syphilis, the internal organs, including the brain, 

nerves, eyes, heart, blood vessels, liver, bones, and 

joints may subsequently be damaged. This internal 

damage may show up many years later. Signs and 

symptoms of the late stage of syphilis include 

difficulty coordinating muscle movements, paralysis, 

numbness, gradual blindness, and dementia. This 

damage may be serious enough to cause death. 

The flow of the disease is describe as follows 

 

S IR 

 

Indicating that susceptible might become infectives, 

and invectives might be removed, but there is no 

supply of new susceptible to the processes. 

 

We now begin with the Reed-Frost model which 

describes the spread of infection in population due to 

random sampling. 

 

In a given population let ,n nS I and nR  be the 

number of susceptible infected persons and removals 

at the n
th

 sampling time at the end of n
th 

sampling 

interval, the corresponding numbers are 1 1,n nS I 

and 1nR  . 

 

The probability that a susceptible avoids contact with 

all of the infectives during the sampling interval is 

 

(1 ) nI

nq p 
 

 

Therefore, the probability that 

 

1nS k  is 

 

 1 nS kn k

n

S
q p

k

 
 

   
 

which is a simple binomial distribution. That is, the 

probability that k survive the sampling interval as 

susceptible is the number of ways k can be selected 

from among candidates times the probability that k 

avoid effective contact and the probability that have 

effective contact. 

If 1nS k   then 1 1n nI S k    and 

1n n nR R I    

 

This calculation is summarized by the formula 

 

 1Pr[ ] 1 nS kn k

n n n

n

Sk
S and I q p

S k





 
   

   
 

and this called the Reed-Frost model[1]. 

 

The Kermack-Mc Kendrick model [2] is a nonrandom 

model that describes the proportion in large 

populations. 

 

Let nx  denote the number of susceptible, ny  the 

number of infectives and the number of removals. It 

might be expected that the number of susceptible in 

the next sampling interval would be 
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(1 ) ny

n nx p x 
 

 

since the factor (1 ) ny
p  is the proportion of 

susceptible who avoid effective contact with all 

infectives. 

 

Let log (1 )a p  so that 
ae

 is the probability 

that a given susceptible will successfully avoid 

contact with each infective during the sampling 

interval. Assume that the sampling interval is the 

same as the interval of infectiousness. Supposing that 

those leaving the susceptible class enter directly into 

the infectious class, and that a proportion, say b, of 

the infectives remain infective at the end of each 

sampling interval. Then 

 

1
nay

n nx e x


   

 

and 

 

1 (1 )nay

n n ny e x by


   
 

 

determine their numbers. This model is the Kermack-

Mc Kendrick model. 

 

We now consider simple deterministic models 

without removal [3].In a given population at time t, 

let s be the number of susceptible S (t), I (t) be the 

number of infected persons. Let n be the initial 

number of susceptible in the population and let one 

person is infected initially. Assuming that the rate of 

decrease of S (t) or the rate of increase of I (t), is 

proportional to the product of the number of 

susceptible and the number of infected. We obtain a 

model 

 

,
dS dI

SI SI
dt dt

  
 

 

Since S (0) is n and I (0) is one and S (t) +I (t) 

=N+1.we obtain 

 

( 1 )
dS

S n S
dt

  
 

 

Integrating using the initial conditions 

 
( 1)

( 1) ( 1)

( 1) ( 1)
( ) , ( )

n t

n t n t

n n n e
S t I t

n e n e



 



 

 
 

   
 

So that 

 

( ) 0, ( ) 1
n n

S t I t nLt Lt
 

  

 
 

and, ultimately, all persons will be infected. 

 

A modification of above model may be obtain by 

assuming that a susceptible person can become 

infected at a rate proportional to SI and an infected 

person can recover and become susceptible again at a 

rate I  so that we get the model 

 

dS dI
SI I SI I

dt dt
                          (2.1) 

 

which gives 

 

0 0 0( ) ( ) (0) (0) ( 0)S t I t N S I S I I      
   

(2.2) 

 

from (2.1) and (2.2) 

 

2 2( )
dI

N I I kI I
dt

       
 

 

Integrating, we obtain 

 

1

0

1

0

( ) ( 0)
[ 1]

1
( 0)

kt

kt

e
I t k

e
I

k

k
t I









 





  
  



   

 

 

As t  , 

 

( )

0

N if N

I t

if N


 








 
  




  
 



 
 

We now discuss the deterministic model taking into 

account the number of persons removed from the 

population by recovery, immunization, death, 

hospitalization or by any other means. We make use 

of the following assumptions . 

 

I. The population remains at affixed level N in 

the time interval under consideration. This means, of 

course, that we neglect births, deaths from causes 

unrelated to the disease under consideration, 

immigration and emigration. 
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II. The rate of change of the susceptible 

population is proportional to the product of the 

number of (S) and the number of members of (I). 

 

III. Individuals are removed from the infectious 

class (I) at the proportional to the size of (I). 

 

Let S(t), I(t), and R(t) denote the number of 

individuals in classes (S),(I),and (R),respectively, at 

time t. It follows immediately form rules (I-III) that S 

(t), I (t), and R (t) satisfies the system of differential 

equations. 

 

dS
rSI

dt


 
 

dI
rSI I

dt
     (2.3) 

 

dR
I

dt


 
 

For some positive constants r and  .The 

proportionality constant r is called the infection rate, 

and the proportionality constant   is called removal 

rate. 

 

The first two equations of (2.1, 2.2) do not depend on 

R.Thus,we need only consider the system of 

equations. 

 

,
dS dI

rSI rSI I
dt dt

  
 

 (2.4) 

 

For the two unknown functions S (t) and I (t).Once S 

(t) and I (t) are known, we can solve for R (t) form 

the third equation of (2.3).Alternately, observe that

( )d S I R

dt

 
. 

 

Thus, 

 

S (t) +I (t) +R (t) =constant=N 

 

so that  R(t)=N-S(t)-I(t), 

 

the orbits of (2.2) are the solution curves of the first-

order equation 

 

1
dI rSI I

dt rSI rS

 
  


  (2.5) 

 

Integrating this differential equation gives 

 

0 0

0

( ) log
S

I S I S S
S

           (2.6) 

 

where 0S  and 0I  are the number of susceptible and 

infectives at the initial time 0t t  and 
r


  .To 

analze the behavior of the curves(2.6),we compute

'( ) 1I S
S


   .The quantity 1

S


  is negative 

for S   ,and positive for S  .Hence, I(S) is an 

increasing function of S for S  and a decreasing 

function of S for S  .Next, observe that 

(0)I   and 0 0( ) 0I S I  .Consequently, 

there exists a unique point S with 00 S S  , 

such that ( ) 0I S  , and ( ) 0I S  for 0S S S   

.The point ( ,0)S  is an equilibrium point of (2.2) 

since both
dS

dt
 and 

dI

dt
vanish when I=0. 

 

Let us see what all this implies about the spread of the 

disease within the population. As t runs from 0t to 

,  the point (S(t) ,I(t))travels along the curve (2.4), and 

it moves along the curve in the direction of 

decreasing S, since S(t) decreases monotonically with 

time. Consequently, if 0S  is less than, then I(t) 

decreases monotonically to zero, and S(t) decreases 

monotonically to S .Thus, if a small group of 

infectives 0I  is inserted into a group of susceptible 0S  

, with 0S   ,then the disease will die out rapidly. 

On the other hand, if 0S  is greater than, then I(t) 

increases as S(t) decreases to   , and it achieves a 

maximum value when S  . It only starts 

decreasing when number of susceptible falls below 

the threshold value  . From these results we may 

draw the following conclusions. 

 

Conclusions I. An epidemic will occur if the number 

of susceptible in a population exceeds the threshold 

value 
r


  . 

 

II. The spread of the disease does not stop for lack of 

a susceptible population; it stops only for lack of 

infectives. In particular, some individuals will escape 

the disease altogether. 
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What happens when an infectious diseases is 

introduced into a small family? What is the likelihood 

of spread within the family? We can answer these 

questions by carefully counting the possibilities. 

 

Consider a fixed population and assume that three 

kinds of individuals in it are defined by a disease: 

susceptibles,infectives, and removals.Susceptibles 

can  acquire the infection upon effective contact with 

an infective,infectives have the disease and are 

capable of transmitting it, and removals are those who 

have passed through the disease process but are no 

longer susceptible or infective. 

 

S IR 

 

indicating that susceptible might become 

infectives,and invectives might be removed, but there 

is no supply of new susceptible to the processes. 

 

There are problems with taking such a simple view of 

a disease. For example, there are great variations in 

the level of susceptibility, infectiousness, and 

immunity among individuals in populations. Also, 

these definitions may depend on stratifying attributes 

such as age groups, genetic type or mixing groups, 

etc, there are not many diseases whose transmission 

mechanisms are not known, nor how long are latency 

periods between becoming infective and the 

appearance of symptoms. 

 

 

III. CALCULATION OF THE 

SEVERITY OF AN EPIDEMIC 
Suppose that there are smooth functions 

( ), ( ), ( )S t I t and R t and a small interval h such 

that ( ) , ( ) , ( )n n nx S nh y I nh and z R nh  

.Since the sampling interval h is small, we must 

rescale a  and b  
 

Let 1a rh and b h   .Then setting t nh , we 

have 

 

 

 

( )

( )

( ) ( )

( ) (1 ) (1 ) ( )

( ) ( ) (1 (1 ) )

rh I t

rh I t

S t h e S t

I t h h I t e S t

R t h R t h I t









 

    

    
 

 

It follows that 

 

 

( )

( )

( ) ( ) ( 1) ( ) ( ) ( )

( ) ( ) ( ) (1 ) ( )

( ) ( ) ( )

( ) ( )

rh I t

rh I t

S t h S t e S t rhI t S t

I t h I t h I t e S t

h I t rhI t S t

R t h R t h I t











    

     

 

  





 
 

Dividing these equations by h  and passing to the 

limit 0h  gives three differential equations for 

approximations to ( ) , ( ) , ( )S t I t and R t ; which we 

write as 

 

ds
rIS

dt


 
 

dI
rIS I

dt
   

 

 

dR
I

dt


 

 
This system of equations is the continuous-time 

version of model.Incidentally,the calculation just 

completed gives a neat derivation of the law of mass 

action in chemistry in which the rate at which to 

chemical species ,say having concentrations S  and , 

I interact is proportional to product S I . Thus, the 

Law of mass action follows from the binomial 

distribution of random interactions since the expected 

number of interactions occurring in a specified (short) 

time interval is 

 

(1 ) (1 )nrh I

n n n n nq S e S rhI S


   
 

 

Obviously, this law and the two model derived for 

epidemics depend on the assumption that the 

populations are thoroughly mixing as the process 

continues 

 

We can solve the differential equations and so 

determine the severity of an epidemic.Taking the 

ratio of the first two equations gives 

 

dS

dI
=

IrIS

rIS


  = 





rS

rS

 
 

Therefore 

 

( 1)dI
rS


  dS  

 

Integrating this equation gives 
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I = ( )logS-S+
r

C


 
 

where c  is a constant of integration that is determined 

by the initial conditions: 

 

0 0 0logC I S S  
 

 

Typical trajectories 

 

In the infinitesimal sampling process, the threshold 

level of S* becomes 

 

(1 )
* (

(1 )a

b
S

e r





 ) 

 

*S is the value of S for which 0
DI

Dt
 .We see that 

trajectories starting near but about this value describe 

epidemics that end at a comparable distance below 

this value.Trajectories that start well about 
*S end up 

near 0S  .However, in each case the final size of 

the susceptible population, S  (infinity),is where the 

trajectory meets the 0I   axis Therefore ,solving 

the equation 

 

S- )(
r


log S= C 

 

For its smaller of two roots gives the final size .this is 

not possible to do in a convenient form; however, it is 

easy to do using a computer. In this way ,we can 

estimate an epidemic’s severity once we have 

estimated the infectiousness ( a  or r ) and the 

removal rate ( b  or  ) 

 

Recurrent diseases. Finally, there are diseases in 

which removals can eventually become susceptible 

again .This is the case for a variety of sexually 

transmitted diseases, for example gonorrhea. The 

flow of such a disease is depicted by the graph 

 

S I S  . 

 

Without further discussion, we can write down a 

model of such a disease: 

 

dS
rSI I

dt

dI
rSI I

dt





 

 
 

 

Since I S is constant (its derivative is zero), we 

can reduce these equations to a single equation. 

 

0 0( )( )
dS

rS I S S
dt

    . 

 

We see that if 
* *

0 0 ,S I S then S S
r


   in 

this case! In the other case 0 0S I S  ,and the 

infection dies out of the population. When 
*S S

,the disease is epidemic. Stratification of the 

population, latency periods of the disease, hidden 

carriers, seasonal cycling of contact rates, and many 

other factors confound the study of epidemics, but the 

simple modals derived here provide useful and 

interesting methods. 

 

IV. SPREAD OF SYPHILIS IN 

ANANTAPUR DISTRICT (A CASE 

STUDY) 
Syphilis – Treatment Prompt treatment 

of syphilis is needed to cure the infection, prevent 

complications, and prevent the spread of the infection 

to others. Antibiotics effectively treat syphilis during 

any. Antibiotic treatment cannot reverse the damage 

caused by complications of late-stage syphilis, but it 

can prevent further complications. Follow-

up blood tests are required to make sure that 

treatment has been effective.  Sex partners of a person 

who has syphilis need to be examined, tested, and 

treated for syphilis. Antibiotic treatment is 

recommended for all exposed sex partners. 

Penicillin is the preferred drug for treating syphilis. 

Penicillin is the standard therapy for the treatment 

of neurosyphilis, congenital syphilis, or syphilis 

acquired or detected during pregnancy.  

 

Syphilis ranks first today among reportable 

communicable diseases in the United States. There 

are more reported cases of Syphilis every year than 

the combined totals for syphilis, measles, mumps, and 

infectious hepatitis. This painful and dangerous 

disease, which is caused by the Syphilis germ, is 

spread from person to person by sexual contact. A 

few days after the infection there is usually itching 

and burning of the genital area, particularly while 

urinating. About the same time a discharge develops 

which males will notice, but which females may not 

notice. Infected women may have no easily 

recognizable symptoms, even while the disease does 

substantial internal damage. Syphilis can only be 

cured by antibiotics (usually penicillin). However, 

treatment must be given early if the disease is to be 

stopped from doing serious damage to the body. If 

untreated, Syphilis can result in blindness, sterility, 

arthritis, heart failure, and ultimately, death. 

http://www.webmd.com/sexual-conditions/guide/syphilis
http://www.webmd.com/heart/anatomy-picture-of-blood
http://www.webmd.com/brain/tc/neurosyphilis-topic-overview
http://www.webmd.com/a-to-z-guides/congenital-syphilis-topic-overview
http://www.webmd.com/baby/default.htm
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In this section we construct a mathematical model of 

the spread of Syphilis. Our work is greatly simplified 

by the fact that the incubation period of Syphilis is 

very short (3-7 days) compared to the often quite long 

period of active infectiousness. Thus, we will assume 

in our model that an individual becomes infective 

immediately after contracting Syphilis. In addition, 

Syphilis does not confer even partial immunity to 

those individuals who have recovered from it. 

Immediately after recovery, an individual is again 

susceptible. Thus, we can split the sexually active and 

promiscuous portion of the population into two 

groups, susceptibles and infectives. Let 1( )c t be the 

total number of promiscuous males, 2 ( )c t be the total 

number of promiscuous females, ( )x t the total 

number of infective males, and ( )y t the total 

number of infective females, at time t. Then, the total 

numbers of susceptible males and susceptible females 

are 1( ) ( )c t x t and 2 ( ) ( )c t y t respectively. The 

spread of Syphilis is presumed to be governed by the 

following rules: 

 

I. Males infectives are cured at a rate 1a proportional 

to their total number, and female infectives are cured 

at a rate 2a  proportional to their total number. The 

constant 1a  is larger than 2a  since infective males 

quickly develop painful symptoms and therefore seek 

prompt medical attention. Female infectives, on the 

other hand, are usually asymptomatic, and therefore 

are infectious for much longer periods. 

 

II. New infectives are added to the male population at 

a rate 1b proportional to the total number of male 

susceptibles and female infectives. Similarly, new 

infectives are added to the female population at a rate 

2b  proportional to the total number of female 

susceptibles and male infectives. 

 

III. The total numbers of promiscuous males and 

promiscuous females remain at constant levels 1c and 

2c , respectively. 

 

It follows immediately from rules I-III that 

 

1 1 1

2 2 2

( )

( )

dx
a x b c x y

dt

dy
a y b c y x

dt

   

   

          (4.1) 

 

If 0( )x t and 0( )y t are positive, then ( )x t  and ( )y t  are positive for all 0t t
 

 

If 0( )x t is less than 1c and 0( )y t  is less than 2c  then ( )x t  is less than 1 ( )c and y t  is less than 2c  for all 0t t
 

 

We can show that equation (4.1) 

 

 

(a) Suppose that 1 2 1 2 1 2a a is less than b b c c .Then, every solution ( )x t , ( )y t  of (4.1) with

0 1 0 20 ( ) 0 ( )x t c and y t c    , approaches the equilibrium solution. 

 

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 2 2 1 1 2 1

,
b b c c a a b b c c a a

x y
a b b b c a b b b c

 
 

 
 

 

as t approaches infinity. In other words, the total number of infective males and infective females will ultimately 

level off. 

 

Proof: The result can be established by splitting the rectangle 1 20 0x c and y c    into regions in 

which both 
dx dy

 and   
dt dt

 have fixed signs. This is a accomplished in the following manner. Setting 
dx

=0
dt

in 

equation (4.1), and solving for y as a function of x gives. 
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1 1 1

1 1

( ) 0

( )

1 1 1

1
1

a x b c x y

             b y(c -x) = a x

a x
                           y=    = x         

b c x


   

  
 

Similarly, setting 0
dy

dt
  in (4.1) 

 

2 2 1

2 2 2

2

2 2

( ) 0

( )

( )

a y b x c y

b x c y a y

a y
x

b c y

   

 




 
 

2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

( )

( )

xb c y a y

xb c xb y a y

xb c a y xb y

xb c y a xb

 

 

 

 
 

 

2 2

2 2

2 2
2

2 2

xb c
y

a xb

xb c
y x

a xb





 


 
 

Observe that 1 x  and 2 x  are monotonic increasing functions of x; 1 x  approaches infinity as x approaches 

1c  and 2 x  approaches 2c  as x approaches infinity. Second, observe that the curves 1y x , 2y x  

intersect at (0,0) and at 0 0( , )x y  where 

 

1 2 1 2 1 2 1 2 1 2 1 2
0 0

1 2 1 2 2 2 1 1 2 1

,
b b c c a a b b c c a a

x y
a b b b c a b b b c

 
 

 
 

Third, observe that 2 x   is increasing faster than 1 x  at 0x , since 

 

' 2 2 1
2

2 1 1

(0)
b c a

a b c
  

 

 

Hence, 2 x  lies above for 00 x x   and lies below 1 x  for 0 1x x c  . The point 0 0( , )x y  is an 

equilibrium point of (4.1) since both 
dx dy

and
dt dt

 are zero when 0x x  and 0y y . 

 

Finally, observe that 
dx

dt
 is positive at any point ( , )x y  above the curve 1y x ,and negative at any point 

( , )x y below this curve. Similarly, 
dy

dt
 is positive at any point ( , )x y  below curve 2y x , and negative 
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point ( , )x y  above this curve. Thus, the curves 1y x ,and 2y x  split the rectangle 

1 20 0x c and y c     into four regions in which 
dx dy

and
dt dt

haved fixed sings. 

 

It can be established that any solution x (t), y (t) of (4.1) which starts in region I at time 0t t , will remain in 

this region for all future time 0t t  that and approach the equilibrium solution 0, 0x x y y   as t approaches 

infinity. 

Any solution x (t), y (t) of (4.1) which starts in region II at time 0t t , will remain in this region II for all future 

time, must approach the equilibrium solution 0, 0x x y y   as t approaches infinity. 

 

Any solution x (t), y (t) of (4.1) which starts in region IV at time 0t t , will remain in this region IV for all 

future time , must approach the equilibrium solution 0, 0x x y y   as t approaches infinity. 

 

We make use of the above mentioned deterministic model to study of severity of Gonorrhea diseased in 

Anantapur district during the period of 1995-2003 based on the data collection from the Head Quarters of 

Hospital Anantapur during this period. 

 

Year wise male population in Anantapur district and case study of Syphilis disease form the recorded data of 

Government Head Quarters Hospital, Anantapur, Andhra Pradesh 

 

Table 1 

Years Total Male 

population 

Total number 

of 

promiscuous 

Males 

Total number 

of Infective 

Males 

Total number 

of Males 

Cured 

1995 1686038 16860.38 7250 6975 

1996 1698463 16984.63 5178 4846 

1997 1723455 17234.55 6147 5872 

1998 1748654 17486.54 3065 2969 

1999 1798563 17985.63 6598 5985 

2000 1810943 18109.43 3657 3465 

2001 1859588 18595.88 2713 2285 

2002 1910464 19104.64 2577 2299 

2003 1945084 19450.84 1954 1835 

 

Year wise Female population in Anantapur district and case study of Syphilis disease form the recorded data of 

Government Head Quarters Hospital, Anantapur, Andhra Pradesh 

 

Table 2 

Years Total Female 

population 

Total number 

of 

promiscuous 

Females 

Total number 

of Infective 

Females 

Total number 

of Females 

Cured 

1995 1516549 15165.49 3549 3020 

1996 1576910 15769.10 1988 1866 

1997 1624704 16247.04 1769 1665 

1998 1672291 16722.91 1935 1798 

1999 1695168 16951.68 1701 1595 

2000 1755574 17555.74 1278 1152 

2001 1780890 17808.90 1356 1265 

2002 1801626 18016.26 1093 943 

2003 1839792 18397.92 899 844 
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Figure 1 Profile of Infective Males with Syphilis Disease during the period of 1995-2003 

 

 
 

Figure 2 Profile of Infective Females with Syphilis Disease during the period of 1995-2003 

 

 

 
 

Figure 3 Profile of Number of Infective Males Vs Number of Infective Females during the period of 1995-2003 

 

V. DISCUSSION 

The Study of epidemic is quite interesting and 

important. When a small group of people having 

infected with an epidemic disease is inserted into a 

large population which is capable of catching the 

disease, the question arises what happens as time 

evolves. Will the disease die out rapidly or its 

spreads? How many people will catches is disease? 

To answer these questions, we have chosen a 

mathematical modeling consisting of a system of 

differential equations which govern the spread of 

infected disease within the population and analyse the 

behavior of its solution. This approach will lead to the 

famous threshold theorem of Epidemiology which 

states that an epidemic will occur only if the number 

of people who are susceptible to the disease exceeds a 

certain threshold value. In this paper, we discussed 

the spread of Syphilis disease among males and 
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females in Anantapur District during the period 1995-

2003, based on the recorded data available in 

Government Head Quarters Hospital Anantapur. As 

already stated, we assume in our model that an 

individual become infective immediately after 

contacting the Gonorrhea. The proportional rate 1a  ,

2a  and 1 2b and b  are quite difficult to evaluate. 

However, we have made the crude estimate of these 

proportional constants based on available data. It is 

interesting note that condition 1 2 1 2 1 2a a b b c c  is 

satisfied by the said constants. This condition is 

equivalent to 1 1 2 2

2 1

1
b c b c

a a

   
   
   

 . The expression 

1 1

2

b c

a

 
 
 

can be interpreted as the average number of 

males that one female infective contact during her 

infectious period, if every male is susceptible. 

Similarly the expression 2 2

1

b c

a

 
 
 

 can be interpreted as 

the average number of females that one male 

infective contact during his infectious period, if every 

female is susceptible. These quantity 1 1

2

b c

a

 
 
 

 and 

2 2

1

b c

a

 
 
 

 are called the maximal female and male 

contacts rates. In view of the fact that this product of 

maximal male and female contact rates is greater than 

one, we may conclude that the solution of the 

mathematical model approaches the equilibrium 

solution and the Syphilis disease will approach a non 

zero steady state in course of time. This equilibrium 

solution also implies that the total number of infective 

males and infective females will ultimately level off, 

and from Fig (3) the point of the equilibrium 

approximately gives 0x (Infective males) =260, 0y  

(Infective females) =266. We may conclude that this 

Epidemic disease does not die out but ultimately 

approach a steady state with reference to its severity 

among the population of Anantapur District. 
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